
Oberon Script: A Lightweight Compiler and Runtime
System for the Web

Ralph Sommerer1

1 Microsoft Research, 7 J J Thomson Avenue,
Cambridge, United Kingdom

som@microsoft.com

Abstract. Oberon Script is a scripting language and runtime system for build-
ing interactive Web Client applications. It is based on the Oberon programming
language and consists of a compiler that translates Oberon Script at load-time
into JavaScript code, and a small runtime system that detects and compiles
script sections written in Oberon Script.

1 Introduction

Oberon is the name of a modular, extensible operating system for single user worksta-
tions [19], and also of an object-oriented programming language specifically devel-
oped to implement the former [17]. Although originally designed as the native operat-
ing system for custom built workstations, Oberon was subsequently ported to various
different computing platforms including personal computers [2][4] and Unix worksta-
tions [1][14][15].

With the recent emergence and proliferation of sophisticated Web client applica-
tions, the Web browser has become a computing platform on its own. It offers the
Web application programmer scripting facilities to programmatically interact with a
Web server, and to manipulate the Web page in-place and without reloading. It thus
allows the construction of complex Web application user interfaces that are not lim-
ited to the page-based hypertext model anymore.

As the Web browser morphs into a runtime system and operating platform for Web
client application, the question arises whether it can provide a suitable target platform
for one more installment of Oberon, especially in light of all previous porting efforts
that have shown Oberon’s demands of the host platform to be very limited.

In this paper we present Oberon Script, an experimental effort to develop a simple
and lightweight application programming framework for building complex Web client
applications in Oberon. The system consists of a load-time Oberon-to-JavaScript [3]
compiler and a small runtime system to process and run script sections written in
Oberon Script.

2 Web Client Programming

The page based hypertext model of the Web is unsuitable for complex Web applica-
tions because the unit of interaction – the execution of a link and the corresponding
loading of a new page even for simple interactions – is too coarse to provide a smooth
and pleasant user experience. Simple interactions such as attaching a file to an email
message in a Web based email client require as many as 3 page loads. Recently, how-
ever, complex Script-based Web applications have started to emerge, that employ a
so-called Ajax-style of application design. Ajax stands for Asynchronous JavaScript
and XML [10]. In applications built using these techniques the page is modified on-
the-fly by programs written in browser-run scripting languages, thus avoiding the
reloading of the page even for complex user activities or display updates. This appli-
cation style was popularized by Google through their e-mail [7] and mapping [8] ser-
vices, although neither was pioneering in relying on Ajax techniques.

2.1 Ajax

The Ajax-style of Web application programming is usually recognized by the use of
the following techniques: HTML DOM [16] manipulation via client-side scripting
languages, mainly JavaScript [3], and the use of XML as the data exchange format
between server and client. The core foundation of Ajax, however, is a built-in browser
component called XMLHttpRequest [10] that allows JavaScript code to interact with a
Web server “behind the scenes” and without having to reload the page. The use of
XML is not essential, and other data formats are commonly employed, including plain
text or a linearization of JavaScript objects (JSON) [12].

2.2 JavaScript

JavaScript is an object-based scripting language for the Web. Originally developed
under the name of LiveScript it was later re-branded as JavaScript because of its su-
perficial syntactical similarities with the programming language Java [9], but also in
order to benefit from the publicity around the then new language. JavaScript is now
standardized as ECMAScript [3], and all modern Web browsers support the language
using different brand names, such as JScript or JavaScript.

JavaScript does not support classes. Instead, it supports a prototype-based inheri-
tance model with shared properties (fields and methods). Objects are created using a
constructor function that initializes the object’s instance variables. Fields and methods
that were defined via the constructor function’s prototype property are subsequently
available as instance fields and methods.

JavaScript objects are implemented as hash tables, and instance fields are stored as
entries in those tables. The following ways of accessing instance fields are therefore
interchangeable: obj.field (field access), obj[field] (hash table access).

The JavaScript runtime system also features a small collection of predefined ob-
jects such as strings, arrays, regular expression objects, and so on, some of which also

have a correspondence in the language (e.g. string constants in the language are in-
stances of the object String).

3 Oberon Script

3.1 Language

Oberon Script is a subset of the Oberon programming language as defined in [17].
“Subset” is to be understood not so much with respect to language as to semantics.
Indeed, the Oberon Script compiler compiles the full language as specified in above
referenced language reports, i.e. the language Oberon and some of the additions intro-
duced by Oberon-2 [13]. However, for reasons of simplicity and compactness, and
also to be compatible with the underlying runtime system that is based on JavaScript,
some of the rules are relaxed. Thus, some of what would be syntactical errors in
Oberon is permissible in Oberon Script.

The decision to support the full language was based chiefly on the following prin-
ciples: First, we consider an effort to port a language to a new computing environment
to be incomplete as long as the full language is not supported. Changing the language
to simplify its porting is tantamount to adjusting a question to fit an answer. Problems
encountered during such an endeavor should be regarded as challenges, and not op-
portunities to shortcut. Dropping or adjusting features later for purposes of optimiza-
tion are acceptable but only once the system has proved working. Second, we believe
the Oberon language to be sufficiently concise such that stripping it down any further
will likely harm its expressiveness. The language report specifying the syntax and
semantics of Oberon is one of the shortest around (28 pages). The JavaScript language
specification, in comparison, covers 188 pages [3].

3.2 Compiler

The Oberon Script compiler is a simple one-pass recursive-descent parser [18] that
performs very basic syntax analysis and emits JavaScript constructs as a side-effect.
Manual translation of Oberon constructs into JavaScript revealed that many features
and constructs of the former have a structure that is very similar to those in the latter.
For example, designators, expressions, statements, and control structures look basi-
cally the same in both languages, apart from trivial differences such as the symbols
used to express them. This similarity suggests employing regular expressions to trans-
late Oberon’s syntax into that of JavaScript. However, after some initial experiments
we decided against it. Apart from very simple expressions, most syntactical elements
require the translator to have a certain minimal understanding of their structure in
order to translate them into correct JavaScript. For instance, a simple designator, such
as a local variable, can be discovered using regular expressions, but a moderately
complex one, e.g. one involving arrays, type tests, or even a combination of these,

requires at least some (recursive) parsing to establish its extent. But if some parsing is
required in any case for any moderately complex program, it stands to reason that we
can as well parse the whole program.

While the syntactical differences of Oberon with the resulting JavaScript code are
too big to allow using regular expressions to translate one into the other, they are
small enough to greatly simplify the compiler. For example, in many places it is only
necessary to identify syntactical patterns instead of their details. The same parsing
routine can therefore be employed in different places in our compiler where the differ-
ent semantics of such constructs would require different routines in a regular compiler.
Consider for example the following syntactical constructs:

FieldList = [IdentList ":" type].
VariableDeclaration = IdentList ":" type.
FPSection = [VAR] ident {"," ident} ":" FormalType.

IdentList = identdef {"," identdef}.
identdef = ident ["*"].

Although it is obvious that field lists (of record type declarations), variable declara-
tions, or formal parameter sections (FPSection) are different syntactical constructs and
require different processing in a regular compiler (such as different allocation meth-
ods), for our purposes they are simply lists of identifiers followed by a type. Their
different processing requirements can easily be accommodated for by passing an ap-
propriate handler method, but the compiler doesn’t need to parse them differently. A
single parser method thus suffices for all three.

For reasons of simplicity and compactness of the compiler – and interoperability
with regular JavaScript – only very minimal semantics analyses are performed, and
only where it is necessary to establish a certain condition in order to proceed with the
parsing. Designators, for example, are fully developed, including the type of the cur-
rent selector, in order to determine certain features of the designated object, e.g. to
distinguish procedure calls from type tests, or to handle reference parameters cor-
rectly. Expressions, as a counter example, are not developed at all, and are simply
output to the JavaScript generator. Therefore, a standard procedure call such as the
following (where s is a string variable):

INC(s, "hello world")

which is illegal in Oberon, is not only permissible in Oberon Script, its translation in
JavaScript actually makes perfect sense:

s+="hello world" //contatenation

3.2.1 Modules
Oberon modules can be described in object-oriented terms as singleton objects [6],
with static fields and methods representing the global variables and procedures. This
is also the approach used in Oberon Script to implement modules.

An Oberon Script module is translated into a JavaScript object constructor function
bearing the name of the module. In the body of that function, all exported items, in-
cluding (record) types, constants, variables, and procedures are assigned as static

members of the function object. They can thus be accessed from the “outside” (other
Oberon Script modules or regular JavaScript) using the familiar “dotted” qualified
identifier notion consisting of the module name and that of the object in the form
Module.Object.

Example of an Oberon Script module and its representation as JavaScript object.

(*Oberon Script module*)
MODULE Mod;

CONST
 N*=1024;

TYPE
 Point*=RECORD x,y:INTEGER END;

VAR
 pt*, pt0:Point;

PROCEDURE Move*(dx,dy:INTEGER);
BEGIN INC(pt.x,dx); INC(pt.y,dy)
END Move;

PROCEDURE SetOrg*(x,y:INTEGER);
BEGIN pt0.x := x; pt0.y := y
END SetOrg;

BEGIN pt0.x := 0; pt0.y := 0; pt := pt0
END Mod.

//JavaScript translation
function Mod
{
 Mod.N=1024;
 Mod.Point=function(){this.x=0;this.y=0}
 Mod.pt=new Mod.Point();
 var pt0=new Mod.Point();
 Mod.Move=function(dx,dy){pt.x+=dx;pt.y+=dy}
 Mod.SetOrg=function(x,y){pt0.x=x;pt0.y=y}
 pt0.x=0;
 pt0.y=0;
 _cpy(pt,pt0); //value copy
}
Mod(); //execute body

Non-exported objects (variables, types and procedures) are translated as local func-
tions and/or variables in the body of the constructor function that represents the mod-
ule. Note that this use of local objects (variables, functions) as “private global” objects
is perfectly legal in JavaScript, and possible due to its execution contexts in which a
local function can reference objects of an outer scope and keep them alive even if their
containing scope dies. The global variable pt0 the example above is referenced in the
exported (hence static) procedure SetOrg and thus kept alive even if the body of the

function Mod terminates. If SetOrg were not exported both it and the global variable
pt0 would disappear (i.e. be garbage collected) when Mod terminates. However, this is
perfectly valid, since objects that are not referenced need not be kept alive, irrespec-
tive of whether they are dynamic data structures, or functions and global variables.

3.2.2 Record Types
JavaScript distinguishes only a few type classes (e.g. numbers, objects, and strings),
but doesn’t support types. Objects in JavaScript are considered compatible if they
support the same fields.

An Oberon record type is represented in JavaScript by a constructor function that
initializes the record’s fields and thus renders it “compatible” with one of equal or
extended type. The identity of the type (as opposed to its compatibility) is only re-
quired for type tests. It is represented by a (static) array of constructor functions that
encodes the record’s extension hierarchy. The constructor function also gets as part of
its prototype properties (remember that those are shared by all instances of the object)
a base-type initializer function and a type check function that implements the IS op-
erator. Those features are assigned to the constructor function by a runtime extension
initializer function called _ext.

TYPE
 R0=RECORD x,y: INTEGER END;
 R1=RECORD(R0) b:BOOLEAN END;

VAR
 r:RECORD(R0)k:INTEGER END;
 r1:R1;

function R0(){this.x=0;this.y=0}
_ext(R0);

function R1(){this._b();this.b=false}
_ext(R1,R0);

var r=new function(){this._b=R0;this._b();this.k=0}();
var r1=new R1();

The example above illustrates a named record type declaration, a named type exten-
sion and an anonymous record declaration. The field _b holds the base-type initializer.
In the example above the value of _b in R1 is R0, and will initialize the inherited fields
x and y of R1. In multi-level extensions, the corresponding base-type initializer call
will cascade through all levels until all fields are initialized.

The anonymous record type (3rd example above) does not get an extension list be-
cause it cannot appear on the right-hand side of a type test (left-hand side appearances
can be checked by the compiler). Therefore, the extension initializer _ext is not called
for the record type, and the base-type initializer _b needs to be assigned in-place be-
fore it can be called.

As a consequence of records being JavaScript objects special care is required to
handle record assignments correctly. Assignments to record variables and value pa-
rameters require copying the record contents (recursively if necessary). A generic

runtime function is provided for that purpose. It copies all fields of the source record
for which there is a correspondence in the target record, by enumerating all target field
names and then using them to copy the corresponding source values to the respective
target fields. This is not the most efficient way of handling record assignments, but
record value assignments are relatively rare in Oberon. For reference parameters (see
below) passing the pointer of the record object is sufficient.

3.2.3 Reference Parameters
In Oberon, reference parameters (var parameters in Oberon lingo) allow addresses of
variables to be passed to functions instead of their values. This usually serves one of
two purposes: either to return structured and/or multiple values from functions (return
values are scalar in Oberon), or to pass complex sizeable structures to functions even
if there’s no intention to modify (any of) their values, in order to save the computing
effort of copying the structures onto the argument stack. In JavaScript arguments are
always passed to functions by value.

In contrast to their conceptual simplicity, implementing reference parameters in an
environment that does not support them natively often requires a disproportionate
effort to handle them correctly under any circumstances [11]. The reason is the rare
but non-negligible possibility of aliasing, i.e. the possibility that the variable (memory
location) referenced using a reference parameter might be changed using a different
designator. For instance, a field of a record might be passed as a reference parameter
to a function that later overwrites the complete record (and hence also the field). Al-
though such aliasing effects are rare, they need to be provided for because they are
almost impossible to detect by the compiler.

JavaScript offers a relatively simple way to simulate passing a variable instead of
its value to a function, but care has to be taken that the passed value behaves correctly
under possible aliasing effects. The basic idea is to pass an execution context as the
actual reference parameter to the function rather than the value. The execution context
is that of an anonymous function defined in-line, that contains a reference to the vari-
able, such that all modifications prompted through the execution context affect the
original variable. Assuming the following declarations in Oberon Script and a call to
procedure P:

PROCEDURE P(VAR x:INTEGER);

VAR k: INTEGER;
...
P(k); //procedure call

The translation to JavaScript looks as follows:

function P(x) {...}
...
var k=0;
P(function(v){return(v?k=v:k)});

Note that the body of the function passed to P in above example operates on the k of
the outer, i.e. calling scope. If the passed function is called without an argument, it

returns the value of k, and if it’s called with an argument it sets the value of k. For all
scalar values (including pointers) above solution is resistant to aliasing effects.

The situation is a bit more involved for complex designators denoting instance
fields, values accessed via pointers, and arrays. In these cases the “access path” to the
variable must be evaluated like in a regular compiler to determine the “final” variable
that is passed to the function by reference. To use the technique introduced above the
variable must be referenced in the execution context. To avoid passing a copy instead
of the variable itself, the last selector must be evaluated in the execution context. In
case of arrays, this means that the last array dimension must be evaluated in the execu-
tion context using a cached index expression. The following code segment illustrates
passing arguments by reference using multi-selector designators. The three situations
shown are the following: (1) a pointer dereferencing chain, (2) a field of a multidi-
mensional array of records, and (3) an element of a multidimensional array. They are
based on the type declarations below. The examples list alternately the call in Oberon
and then the translation in JavaScript.

TYPE
 PR=POINTER TO R;
 R=RECORD k:INTEGER; ptr:PR END;
VAR
 ptr:PR;
 a:ARRAY N,N,N OF R;
 b:ARRAY N,N,N OF INTEGER;

P(ptr.ptr.ptr.k); // Oberon (1)

var _0= ptr.ptr.ptr; //JavaScript (1)
P(function(v){return(v?:_0.k=v:_0.k});

P(a[i,j,k].k); // Oberon (2)

var _0= a[i][j][k]; //JavaScript (2)
P(function(v){return(v?:_0.k=v: _0.k});

P(b[i,j,k]); // Oberon (3)

var _0= b[i][j];_1=k; //JavaScript (3)
P(function(v){return(v?:_0[_1]=v: _0[_1]});

From the discussion above it is obvious that the complexity of handling reference
parameters can hardly be justified in light of the simplicity of the original concept.
Future efforts to simplify Oberon Script will thus likely result in reference parameter
being discarded in favor of structured return values that are far simpler to realize in
JavaScript.

3.3 Runtime system

The runtime system consists of the above Oberon-to-JavaScript compiler and a small
set of utility functions that includes JavaScript and DOM bindings, and a facility that

detects script sections written in Oberon Script and subjects them to the compilation
process.

Oberon Script is activated on a Web page by specifying in the header section of the
page a link to the Oberon runtime scripts using a <script> element, and a call to
Oberon.Init() in the onload event handler of the Web page body. As part of the ini-
tialization process, the runtime system identifies all code sections that contain Oberon
Script. These need to be specified using the type attribute on the <script> element.
Oberon Script is specified by the experimental MIME [5] type of “text/x-
oberonscript”. The runtime system then extracts the code from these sections and
compiles them one after the other using the compiler, resulting in a collection of
JavaScript sections. The compiler then replaces the original <script> elements con-
taining Oberon Script code with new ones containing the compiled JavaScript code.
Control is then passed to the compiled code. The following code illustrates the core of
the Oberon Script detector and compiler.

function findLang(scp,typ)
{
 var code=[];
 for(var i=0;i<scp.length;++i){
 if(scp[i].type.toLowerCase()==typ){
 code.push(scp[i].text)
 }
 }
 return code
}

function addScript(par,code)
{
 var scp=document.createElement("script");
 scp.text=code;
 par.appendChild(scp)//this will also execute the code
}

function compileAll(typ,comp)
{
 var scp=document.getElementsByTagName("script");
 if(scp.length>0){
 var par=scp[0].parentNode;
 var code=findLang(scp,typ);
 for(var i=0;i<code.length){
 addScript(par,comp(code[i]))
 }
 }
}

compileAll("text/x-oberonscript",Oberon.Compile);

Although the compiler is usually not needed after it has finished compiling all Oberon
Script sections, it stays around, in case further Oberon Script is created programmati-
cally, and then compiled and executed on-the-fly.

4 Summary and Conclusions

In this paper we have presented an experimental runtime system called Oberon Script
for using Oberon as a scripting language in the Web environment. It consists of an
Oberon Script detector and a simple compiler that translates Oberon into JavaScript as
a portable runtime code. We have shown that it is possible to process and compile the
full language albeit with some effort to handle the few features in Oberon that are
difficult to port without native support such as its reference parameters.

For a scripting language it is acceptable to sacrifice some of the parent language’s
features to simplify its implementation. Supporting the full language, however, makes
it possible in theory to port the whole Oberon system to the browser, thus turning the
latter into a virtual machine. How difficult it is to accomplish this task – and whether
it is sensible to attempt it in the first place – needs to remain the subject of further
study.

The current version of the Oberon Script compiler which is not optimized for effi-
ciency nor code size consists of 1081 lines of JavaScript code (24452 bytes). It com-
piles an Oberon module of 268 lines (7933 bytes) in 783 ms (average of 10 runs).

References

1. Brandis, M., Crelier, R., Franz, M., Templ, J.: The Oberon System Family. Tech. Report
ETH 174, (1992)

2. Disteli, A. R.: Oberon for PC on an MS DOS Base. Tech. Report ETH 203, (1993)
3. ECMA International, ECMAScript Language Specification, Standard ECMA-262, 3rd ed.

(1999)
4. Franz, M.: Emulating an Operating System on Top of Another. Software - Practice and

Experience, Vol. 23:6, 677-692, (1993)
5. Freed, N., Borenstein, N.: Multipurpose Internet Mail Extensions (MIME) Part Two: Media

Types, RFC 2046 (1996)
6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley (1994)
7. Google Mail, http://gmail.google.com
8. Google Maps, http://maps.google.com
9. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edition.

Addison-Wesley (2005)
10. Garrett, J. J.: Ajax: A New Approach to Web Applications, http://www.adaptivepath.com/

publications/essays/archives/000385.php
11. Gough, K. J., Courney, D.: Evaluating the Java Virtual Machine as a Target for Languages

Other Than Java. Proc. Joint Modular Languages Conf. (JMLC 2000), Zurich, Switzerland.
Lecture Notes in Computer Science Vol. 1897, 278-290, Springer (2000)

12. JavaScript Object Notation (JSON), http://www.json.org
13. Mössenböck, H., Wirth N.: The Programming Language Oberon-2. Structured Program-

ming, Vol. 12:4, 179-196. (1991)
14. Supcik, J.: HP-Oberon (TM). The Oberon Implementation for HP 9000 Series 700. Tech.

Report ETH 212, (1994)
15. Templ, J.: Design and Implementation of SPARC-Oberon. Structured Programming, Vol.

12, 197-205. (1991)

16. W3C: Document Object Model (DOM). http://www.w3.org/DOM/
17. Wirth, N.: The Programming Language Oberon. Software - Practice and Experience, Vol.

18, 671-690. Springer-Verlag, Berlin Heidelberg New York (1989)
18. Wirth, N.: Compiler Construction. Addison-Wesley (1996)
19. Wirth, N., Gutknecht, J.: The Oberon System. Software - Practice and Experience, Vol. 19,

857-893. Springer-Verlag, Berlin Heidelberg New York (1989)

